
MATH 245 F21, Exam 1 Solutions

1. Carefully define the following terms: factorial, converse.

The factorial is a function from N0 to N, defined via: 0! = 1, n! = n × (n − 1)! (for n ≥ 1).
Given any propositions p, q, the converse of conditional proposition p → q is the proposition
q → p.

2. Carefully state the following theorems: Division Algorithm theorem, Disjunctive Syllogism
semantic theorem

The DA theorem states: Let a, b be arbitrary integers, with b ≥ 1. Then there are unique
integers q, r, satisfying a = bq+r and 0 ≤ r < b. The DS theorem states: Let p, q be arbitrary
propositions. If p ∨ q and ¬p are both true, then q is true. [Or, in symbols, p ∨ q,¬p ` q.]

3. Prove or disprove: For all a, b ∈ Z, if a is even and b is odd, then ab is even.

The statement is false. To disprove we need integers a, b, such that a is even, b is odd, and
ab is not even.

SOLUTION 1: Take a = 0, b = −1. a = 2 · 0 is even, and b = 2 · (−1) + 1 is odd. Now
ab = 0−1 = 1

0 is not even a number, so it’s not even.

SOLUTION 2: Take a = 2, b = −1. a = 2 · 1 is even, and b = 2 · (−1) + 1 is odd. Now
ab = 2−1 = 1

2 = 0.5 is not an integer, so it’s not even.

4. Let a, b, c ∈ Z, and suppose that a|b. Prove that ac|bc.

Since a|b, there is some integer n with an = b. Multiply both sides by c, we get anc = bc.
Rewrite as (ac)n = bc. Since n is (still) an integer, ac|bc.

5. State and prove the Conditional Interpretation Theorem.

Thm. Let p, q be propositions. Then p→ q ≡
q ∨ ¬p.

Pf. The third and fifth columns of the truth
table (to the right) agree; hence the two
propositions are equivalent.

p q p→ q ¬p q ∨ ¬p
T T T F T
T F F F F
F T T T T
F F T T T

6. Simplify the proposition ¬(p→ (q ∧ r)) as much as possible, where only basic propositions are
negated. Be sure to justify each step.

SOLUTION 1: (1) Apply Conditional Interpretation, to get ¬((q ∧ r) ∨ ¬p). (2) Apply De
Morgan’s Law, to get (¬(q∧r))∧(¬¬p). (3) Apply Double Negation, to get to get (¬(q∧r))∧p.
(4) Apply De Morgan’s Law, to get ((¬q) ∨ (¬r)) ∧ p. This is as simple as it gets, but if you
want to use distributivity you can.

SOLUTION 2: (1) Apply Negated Conditional Interpretation (Thm 2.16), to get p∧¬(q∧r).
(2) Apply De Morgan’s Law, to get p ∧ ((¬q) ∨ (¬r)).



7. State the Modus Tollens Theorem, and prove it without truth tables. (you may use any other
semantic theorems we have proved).

Thm: Let p, q be propositions. Then p→ q,¬q ` ¬p.
Proof: All proofs begin by assuming p→ q,¬q are true. The proof ends by proving ¬p, which
can be reached via:

METHOD 1: Apply Conditional Interpretation to get q ∨ ¬p. Apply Disjunctive Syllogism
to get ¬p.

METHOD 2: Apply a theorem from the book (3.13) that p→ q is logically equivalent to its
contrapositive, (¬q)→ (¬p). Apply Modus Ponens to get ¬p.

METHOD 3: There are two cases: p can be false or true. If p is false, we are done. If instead
p is true, then by modus ponens q is true. But now q is both false and true, a contradiction
– so this case does not occur.

8. Let p, q, r, s be propositions. Without using truth tables, prove the following semantic theorem:
p→ (q ∨ r), q → s, r → s ` p→ s.

The proof begins by assuming p→ (q ∨ r), q → s, r → s are all true. There are many ways to
proceed.

METHOD 1: Two cases: p is either false or true. If false, then addition gives us s ∨ ¬p, and
by conditional interpretation p → s. If instead p is true, then modus ponens gives us q ∨ r.
We now have two subcases: if q is true, then modus ponens gives s. If instead r is true, then
modus ponens again gives s. In both subcases, s is true, so addition gives us s ∨ ¬p, and by
conditional interpretation p→ s. In both cases, p→ s is true.

METHOD 2: Two cases: s is either true or false. If true, then addition gives us s ∨ ¬p, and
by conditional interpretation p → s. If instead s is false, then by modus tollens twice, we
get ¬q and ¬r. By conjunction, we get (¬q) ∧ (¬r). By De Morgan’s Law (in reverse), we
get ¬(q ∨ r). By modus tollens one last time, we get ¬p. Addition gives us s ∨ ¬p, and by
conditional interpretation p→ s. In both cases, p→ s is true.

METHOD 3: We prove p → s using a direct proof (with the added hypotheses of p →
(q ∨ r), q → s, r → s). So, we assume p is true. By modus ponens, q ∨ r is true. We now have
two cases. If q is true, by modus ponens s is true. If instead r is true, then by modus ponens
again s is true. In both cases, s is true. Hence we have proved p→ s using a direct proof.

9. Prove or disprove: ∀x ∈ N, |4x− 9| > 1.

The statement is false, and requires a counterexample. We take natural number x = 2 and
find |4x− 9| = |4 · 2− 9| = |8− 9| = | − 1| = 1, and 1 6> 1. Hence |4x− 9| 6> 1.

10. Prove the proposition: ∃x ∈ N, ∀y ∈ N, |0− y| > |x− y|.

The statement is true. First, we choose x = 1 (found via a side calculation1). Now, we let
y ∈ N be arbitrary. We calculate |0 − y| = | − y| = y (since y ∈ N, −y < 0 so | − y| =
−(−y) = y). We also calculate |x − y| = |1 − y| = y − 1 (since y ∈ N, y − 1 ≥ 0 and so
|1− y| = −(1− y) = y − 1). Next, we calculate (y − 1)− y = 1 ∈ N0 (this proves y ≥ y − 1,
using the definitions in chapter 1), and lastly y − 1 6= y since if y − 1 = y we could subtract
y and get −1 = 0. This proves y > y − 1 and hence |0− y| > |x− y|.

1This is the only choice of x that works.


