MATH 245 F21, Exam 1 Solutions

1. Carefully define the following terms: factorial, converse.

The factorial is a function from \mathbb{N}_{0} to \mathbb{N}, defined via: 0 ! $=1, n!=n \times(n-1)$! (for $\left.n \geq 1\right)$. Given any propositions p, q, the converse of conditional proposition $p \rightarrow q$ is the proposition $q \rightarrow p$.
2. Carefully state the following theorems: Division Algorithm theorem, Disjunctive Syllogism semantic theorem
The DA theorem states: Let a, b be arbitrary integers, with $b \geq 1$. Then there are unique integers q, r, satisfying $a=b q+r$ and $0 \leq r<b$. The DS theorem states: Let p, q be arbitrary propositions. If $p \vee q$ and $\neg p$ are both true, then q is true. [Or, in symbols, $p \vee q, \neg p \vdash q$.]
3. Prove or disprove: For all $a, b \in \mathbb{Z}$, if a is even and b is odd, then a^{b} is even.

The statement is false. To disprove we need integers a, b, such that a is even, b is odd, and a^{b} is not even.

SOLUTION 1: Take $a=0, b=-1 . a=2 \cdot 0$ is even, and $b=2 \cdot(-1)+1$ is odd. Now $a^{b}=0^{-1}=\frac{1}{0}$ is not even a number, so it's not even.
SOLUTION 2: Take $a=2, b=-1 . \quad a=2 \cdot 1$ is even, and $b=2 \cdot(-1)+1$ is odd. Now $a^{b}=2^{-1}=\frac{1}{2}=0.5$ is not an integer, so it's not even.
4. Let $a, b, c \in \mathbb{Z}$, and suppose that $a \mid b$. Prove that $a c \mid b c$.

Since $a \mid b$, there is some integer n with $a n=b$. Multiply both sides by c, we get $a n c=b c$. Rewrite as $(a c) n=b c$. Since n is (still) an integer, $a c \mid b c$.
5. State and prove the Conditional Interpretation Theorem.

Thm. Let p, q be propositions. Then $p \rightarrow q \equiv$ $q \vee \neg p$.

Pf. The third and fifth columns of the truth table (to the right) agree; hence the two propositions are equivalent.
6. Simplify the proposition $\neg(p \rightarrow(q \wedge r))$ as much as possible, where only basic propositions are negated. Be sure to justify each step.
SOLUTION 1: (1) Apply Conditional Interpretation, to get $\neg((q \wedge r) \vee \neg p)$. (2) Apply De Morgan's Law, to get $(\neg(q \wedge r)) \wedge(\neg \neg p)$. (3) Apply Double Negation, to get to get $(\neg(q \wedge r)) \wedge p$. (4) Apply De Morgan's Law, to get $((\neg q) \vee(\neg r)) \wedge p$. This is as simple as it gets, but if you want to use distributivity you can.

SOLUTION 2: (1) Apply Negated Conditional Interpretation (Thm 2.16), to get $p \wedge \neg(q \wedge r)$. (2) Apply De Morgan's Law, to get $p \wedge((\neg q) \vee(\neg r))$.
7. State the Modus Tollens Theorem, and prove it without truth tables. (you may use any other semantic theorems we have proved).

Thm: Let p, q be propositions. Then $p \rightarrow q, \neg q \vdash \neg p$.
Proof: All proofs begin by assuming $p \rightarrow q, \neg q$ are true. The proof ends by proving $\neg p$, which can be reached via:
METHOD 1: Apply Conditional Interpretation to get $q \vee \neg p$. Apply Disjunctive Syllogism to get $\neg p$.
METHOD 2: Apply a theorem from the book (3.13) that $p \rightarrow q$ is logically equivalent to its contrapositive, $(\neg q) \rightarrow(\neg p)$. Apply Modus Ponens to get $\neg p$.
METHOD 3: There are two cases: p can be false or true. If p is false, we are done. If instead p is true, then by modus ponens q is true. But now q is both false and true, a contradiction - so this case does not occur.
8. Let p, q, r, s be propositions. Without using truth tables, prove the following semantic theorem: $p \rightarrow(q \vee r), q \rightarrow s, r \rightarrow s \vdash p \rightarrow s$.
The proof begins by assuming $p \rightarrow(q \vee r), q \rightarrow s, r \rightarrow s$ are all true. There are many ways to proceed.
METHOD 1: Two cases: p is either false or true. If false, then addition gives us $s \vee \neg p$, and by conditional interpretation $p \rightarrow s$. If instead p is true, then modus ponens gives us $q \vee r$. We now have two subcases: if q is true, then modus ponens gives s. If instead r is true, then modus ponens again gives s. In both subcases, s is true, so addition gives us $s \vee \neg p$, and by conditional interpretation $p \rightarrow s$. In both cases, $p \rightarrow s$ is true.
METHOD 2: Two cases: s is either true or false. If true, then addition gives us $s \vee \neg p$, and by conditional interpretation $p \rightarrow s$. If instead s is false, then by modus tollens twice, we get $\neg q$ and $\neg r$. By conjunction, we get $(\neg q) \wedge(\neg r)$. By De Morgan's Law (in reverse), we get $\neg(q \vee r)$. By modus tollens one last time, we get $\neg p$. Addition gives us $s \vee \neg p$, and by conditional interpretation $p \rightarrow s$. In both cases, $p \rightarrow s$ is true.
METHOD 3: We prove $p \rightarrow s$ using a direct proof (with the added hypotheses of $p \rightarrow$ $(q \vee r), q \rightarrow s, r \rightarrow s)$. So, we assume p is true. By modus ponens, $q \vee r$ is true. We now have two cases. If q is true, by modus ponens s is true. If instead r is true, then by modus ponens again s is true. In both cases, s is true. Hence we have proved $p \rightarrow s$ using a direct proof.
9. Prove or disprove: $\forall x \in \mathbb{N},|4 x-9|>1$.

The statement is false, and requires a counterexample. We take natural number $x=2$ and find $|4 x-9|=|4 \cdot 2-9|=|8-9|=|-1|=1$, and $1 \ngtr 1$. Hence $|4 x-9| \ngtr 1$.
10. Prove the proposition: $\exists x \in \mathbb{N}, \forall y \in \mathbb{N},|0-y|>|x-y|$.

The statement is true. First, we choose $x=1$ (found via a side calculation ${ }^{1}$). Now, we let $y \in \mathbb{N}$ be arbitrary. We calculate $|0-y|=|-y|=y$ (since $y \in \mathbb{N},-y<0$ so $|-y|=$ $-(-y)=y$). We also calculate $|x-y|=|1-y|=y-1$ (since $y \in \mathbb{N}, y-1 \geq 0$ and so $|1-y|=-(1-y)=y-1)$. Next, we calculate $(y-1)-y=1 \in \mathbb{N}_{0}$ (this proves $y \geq y-1$, using the definitions in chapter 1), and lastly $y-1 \neq y$ since if $y-1=y$ we could subtract y and get $-1=0$. This proves $y>y-1$ and hence $|0-y|>|x-y|$.

[^0]
[^0]: ${ }^{1}$ This is the only choice of x that works.

